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Abstract—3D Gaussian splatting (3DGS) has emerged as a
promising direction for SLAM due to its high-fidelity reconstruc-
tion and rapid convergence. However, 3DGS-SLAM algorithms
remain impractical for mobile platforms due to their high
computational cost, especially for their tracking process.

This work introduces SPLATONIC, a sparse and efficient real-
time 3DGS-SLAM algorithm-hardware co-design for resource-
constrained devices. Inspired by classical SLAMs, we propose
an adaptive sparse pixel sampling algorithm that reduces the
number of rendered pixels by up to 256x while retaining
accuracy. To unlock this performance potential on mobile GPUs,
we design a novel pixel-based rendering pipeline that improves
hardware utilization via Gaussian-parallel rendering and pre-
emptive «-checking. Together, these optimizations yield up to
121.7x speedup on the bottleneck stages and 14.6x end-to-
end speedup on off-the-shelf GPUs. To further address new
bottlenecks introduced by our rendering pipeline, we propose
a pipelined architecture that simplifies the overall design while
addressing newly emerged bottlenecks in projection and aggrega-
tion. Evaluated across four 3DGS-SLAM algorithms, SPLATONIC
achieves up to 274.9 x speedup and 4738.5x energy savings over
mobile GPUs and up to 25.2 x speedup and 241.1 X energy savings
over state-of-the-art accelerators, all with comparable accuracy.

Index Terms—3D Gaussian Splatting, SLAM, Accelerator.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a key
component to intelligent automation across various applica-
tions [7]], [10], [35], [67]], [[76]. Among SLAM algorithms,
3D Gaussian splatting (3DGS)-based algorithms [36], [S6]],
[61], [78], [81]] have recently emerged as a promising direction
due to their superior reconstruction fidelity and fast conver-
gence [6], [72], [74]], [84], over their alternatives. For example,
iterative closest point (ICP)-based methods [31], [59]], [83]
often struggle in low-texture and poor lighting environments.
Neural radiance field (NeRF)-based methods [26], [33]], [65],
[85] suffer from high compute costs and slow rendering.

Nevertheless, 3DGS-SLAM algorithms remain constrained
in mobile applications due to their substantial computation
overheads. The state-of-the-art 3DGS-SLAM algorithms often
fail to achieve real-time on off-the-shelf mobile SoCs [1]], [4]],
[S]. For instance, the average frame rate of a 3DGS-SLAM

algorithm, SplaTAM [36], is only 0.1 Hz on a mobile Ampere
GPU [1]], far from real-time (10-30 Hz). This gap between the
computation demands and the hardware capability motivates
the need for an acceleration solution on mobile devices.

In general, 3DGS-SLAM algorithms consist of two concur-
rent processes: tracking and mapping. Tracking estimates the
camera pose of each frame based on the reconstructed scene,
while mapping reconstructs unseen regions of the scene by
generating new 3D Gaussian primitives. These two processes
often operate at different frequencies: tracking runs in a per-
frame manner to ensure the pose accuracy; and mapping
is invoked less frequently, usually every 4-8 frames. Our
experiment shows that the amortized per-frame latency of
mapping is only one-quarter that of tracking (Fig. d). Thus, our
work primarily focuses on accelerating the tracking process.

Idea. Although tracking and mapping serve different pur-
poses, both share the same differentiable rendering pipeline
and rely on training to obtain accurate results. Among all
stages in this pipeline, rasterization is the primary bottleneck
in both forward and backward training passes (see Fig. [3)),
accounting for 94.7% of the execution time, due to the need to
iterate over every pixel of a frame in rasterization. Inspired by
classical SLAM approaches [31]], [59], [83]], which accelerate
localization by detecting key features, we explore whether the
similar sparsity-based principle can apply to 3DGS-SLAMs.
Since the workload of rasterization is proportional to the
number of processed pixels, processing fewer pixels could
dramatically reduce the overall computation cost [37].

Thus, we propose an adaptive sparse sampling algorithm in
Sec. that can select important pixels at runtime to reduce
the overall computation cost. Based on the characteristics
of tracking and mapping, we tailor sampling strategies for
each process. In tracking, we find that a simple yet effective
approach, uniform random sampling, is sufficient to preserve
pose estimation accuracy, while reducing the number of pro-
cessed pixels by 256x. In mapping, on the other hand, our
sampling algorithm prioritizes pixels in unseen regions or
areas with rich textures to preserve reconstruction quality.
Overall, we show that our sampling algorithm achieves the
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best accuracy compared to existing sampling strategies.
Pipeline. However, directly applying our sparse sampling
algorithm to the existing 3DGS pipeline achieves merely a
4.2x speedup on rasterization, far below the compute sav-
ings (256x). The fundamental reason is that current 3DGS
pipelines [14], [32]], [37], [75] all adopt a tile-based rendering,
which exploits the data sharing across pixels in rasterization to
amortize the compute cost of its earlier stages, i.e., projection
and sorting. However, this rendering paradigm is inherently
ill-suited to sparse pixel rendering, as sparsely distributed
pixels offer little opportunity for data sharing and result in low
hardware utilization on both GPUs and dedicated accelerators.
Thus, we design a pixel-based rendering pipeline in
Sec. Compared to tile-based rendering, our pipeline
has two key advantages. First, we explicitly perform pixel-
level projection that eliminates the unnecessary computation
of subsequent stages that would otherwise result from the
data sharing of tile-based rendering. Second, we propose
a Gaussian-parallel rasterization, where multiple processing
elements (PEs) co-render a single pixel, rather than assigning
one pixel per PE. Our Gaussian-parallel rasterization largely
improves the PE parallelism. In addition to our pixel-based
rendering, we further propose preemptive a-checking, a tech-
nique to eliminate the warp divergence across PEs and avoid
the unnecessary computations after the projection stage. With
all optimizations together, we boost the rasterization perfor-
mance up to 121.7x on an off-the-shelf GPU in Sec.

Architectural Support. With rasterization no longer the

bottleneck, we find that the main bottlenecks shift to the
projection in the forward pass and the aggregation in the back-
ward pass (Fig. 3). To address new bottlenecks, we propose
a clean-slate pipelined architecture in Sec.[V] Specifically, we
introduce a lightweight rasterization engine that simplifies the
rendering logic of rasterization in both the forward and back-
ward passes. Furthermore, we augment a projection unit to
mitigate the increased computational overhead by preemptive
a-checking. Finally, we design a specialized aggregation unit
to address the frequent pipeline stalls due to aggregation.

Result. We evaluate SPLATONIC on four popular 3DGS-

SLAM algorithms. With our sampling algorithm and pixel-
based rendering, SPLATONIC achieves 14.6x end-to-end
speedup and 86.1% energy reduction on the mobile Ampere
GPU [1] with comparable accuracy against the baseline al-
gorithms. With hardware support, SPLATONIC achieves up to
274.9x speedup and 4738.5x energy savings against the GPU
baseline, while achieving up to 25.2x speedup and 241.1x
energy savings against the prior accelerators [29]], [77]. Even
with the same sparse sampling algorithm, SPLATONIC still
can achieve up to 12.7x speedup and 200.8 x energy savings
against prior accelerators [29], [77].

The contributions of this paper are as follows:

e We propose a sparse pixel sampling algorithm for 3DGS-
SLAMs that achieves up to 256x pixel reduction in
tracking with an even better task accuracy.

o We introduce a pixel-based rendering pipeline that im-
proves the parallelism in sparse pixel processing and
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Fig. 1. Overview of 3DGS-SLAM process. Tracking and mapping share
the same optimization pipeline with different optimization targets. Tracking
optimizes camera poses {C} } while mapping reconstructs the scene {G}.
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Fig. 2. The timing diagram of 3DGS-SLAM process. Tracking often runs
more frequently compared to mapping. Mapping, My, at the same time, t,
needs to be executed after tracking, 7%, due to the dependency.

achieves up to 121.7x speedup on the bottleneck stages.

o We co-design a pipelined accelerator architecture, which
further addresses the remaining bottlenecks in pixel-based
rendering and further improves performance.

II. BACKGROUND
A. 3DGS-based SLAM

Overview. The overall goal of SLAM is to reconstruct the
scene of an unknown environment while simultaneously esti-
mating the agent’s trajectory within that scene. 3DGS-SLAM
algorithms [36], [56], [61], [81] achieve this by leveraging
3DGS rendering pipelines, as illustrated in Fig. [I| The overall
process can be divided into two concurrent processes: tracking
and mapping. These two processes jointly optimize two sets of
trainable parameters: the camera trajectory, {C;}, and a set of
Gaussian points, {G;}, that represent the reconstructed scene.
We next describe these two processes separately.

Tracking. The goal of tracking is to estimate each camera
pose, Cy, along the trajectory. During tracking, we assume
that the current reconstructed scene is valid, as shown by the
red dashed block in Fig. Under this assumption, we fix
the trainable parameters of the Gaussian representation, {G, },
and render an image, I, at the current estimated camera pose,
Cy, in the forward pass. By calculating the loss between the
rendered image, I;, and the reference image, R;, the backward
pass of the 3DGS pipeline then back-propagates the loss to
the unfixed parameters, i.e., C;, in a self-supervised manner.
By S, iterations, the estimated camera pose C; progressively
converges to a value that is close to the true pose.

Mapping. The purpose of mapping, on the other hand, is
to reconstruct previously unreconstructed regions of the scene
(e.g., the blue dashed blocks in Fig. [T) based on the current
observations. At time ¢, we select w recent camera poses and
fix their pose parameters. We then fine-tune the 3D Gaussian
representations using these poses and their corresponding
images. This fine-tuning follows the same training process
as tracking, except that mapping updates only Gaussian pa-
rameters {G;} rather than {C;}. Over S, iterations, the
Gaussian representation is progressively refined by inserting
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Fig. 3. The overview of 3DGS forward and backward passes. The forward pass consists of three stages: projection, sorting, and rasterization. Both projection
and sorting are performed at tile granularity to amortize the computational cost across pixels, while rasterization must be performed at the pixel level to
render individual pixels correctly. Because different pixels within a tile need to integrate different subsets of Gaussians. The backward pass mainly comprises
two stages: reverse rasterization and re-projection. Reverse rasterization computes the partial gradients of all pixel-Gaussian pairs and aggregates them to the
corresponding Gaussians. Re-projection then transforms the accumulated gradients from the camera coordinate system to the world coordinate system.

new Gaussian points until convergence. Note that, mapping is
typically performed less frequently than tracking.

Order. Fig. 2] shows the timing diagram of a 3DGS-
SLAM process. As shown, tracking and mapping are executed
concurrently but at different frequencies. Tracking (in red) runs
continuously at each frame to estimate the camera pose. On
the other hand, mapping (in blue) is invoked less frequently.
However, mapping, M;, at time ¢ must be executed after 7}
due to the dependency between tracking and mapping.

B. 3DGS Training Pipeline.

The core of the 3DGS-SLAM algorithm is the 3DGS train-
ing process, which maintains two sets of tunable parameters:
the camera poses that capture the overall trajectory, {C}}, and
the 3D Gaussian points, {G;}, that model the reconstructed
scenes. Each Gaussian has a set of attributes that capture the
geometric and textural properties of the scene. As shown in
Fig. ] the training process can be classified into two passes:
the forward pass and the backward pass.

Forward Pass. The overall forward pass consists of three
stages: projection, sorting, and rasterization.

Projection. The purpose of projection is to filter out
Gaussians that lie outside the current view frustum. To amor-
tize computational overhead, current pipelines perform this
filtering at the tile level, rather than pixel-by-pixel, to identify
the intersection between Gaussians and rendering tiles. The
results are then written into a tile-Gaussian intersection table.

Sorting. Once each tile obtains its intersected Gaussians,
sorting determines the rendering order of those Gaussians
within individual tiles. This stage ensures that all Gaussians
are rendered in a correct order, from the closest to the farthest.

Rasterization. The sorted Gaussians in the tile-Gaussian
sorted list are then rendered pixel-by-pixel. All pixels within
a tile would first iterate over the Gaussians in the sorted list

and perform a-checking. a-checking is used to filter out the
Gaussians that do not intersect with the individual pixels. A
Gaussian is considered to intersect with a pixel if its computed
transparency, o, at that pixel exceeds a predefined threshold,
a*. Conceptually, each pixel forms its own list of intersected
Gaussians after o-checking, as shown in Fig. [3]

Once this is complete, each pixel would integrate the color
contributions from its own list and accumulate the final pixel
value. This color integration process is governed by,

N i—1
C(p) = ZFiO&Z‘Ci, where ['; = H(l - aj), (1)
i=1 j=1

where C(p) is the final color of pixel p, «; and c; denote the
transparency and color of the i¢th Gaussian, and I'; represents
the accumulated transmittance along the ray from the first
Gaussian to the (¢ — 1)th Gaussian.

Backward Pass. Once the image is rendered, the backward
pass first calculates the pixel-wise loss between the rendered
image and the reference image. This loss is then backprop-
agated to the relevant Gaussians to update their parameters.
Overall, the backward pass consists of two main stages:
reverse rasterization and re-projection.

Reverse Rasterization. Overall, this stage computes the par-
tial gradients of every pixel-Gaussian pair and then aggregates
the relevant gradients to individual Gaussians.

This process begins by identifying the intersected Gaussian
list for each pixel via a-checking. Similar to the forward pass,
a-checking uses the previously cached tile-Gaussian sorted list
from the forward pass to obtain the per-pixel intersection lists.

Given these per-pixel lists, the reverse color integration
reverses the color integration process defined in Eqn. [T] and
computes the partial gradients of individual Gaussians for
each pixel. Unlike forward color integration, the reverse color
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Fig. 4. The amortized latency of Fig. 5. Normalized execution break-

down across algorithms. Rasteriza-
tion and reverse rasterization domi-
nate the execution.

tracking vs. mapping across algo-
rithms [36], [56], [61], [81]. Tracking
dominates the execution.
integration processes Gaussians from the Nth Gaussian to the
1st Gaussian. The resulting gradients for each pixel-Gaussian
pair are then collected into the pixel-Gaussian gradient list.
Using the pixel-Gaussian gradients, the aggregation stage
collects all gradients associated with each Gaussian and cal-
culates the accumulated gradient for each Gaussian.
Re-Projection. This stage then transforms the accumulated
gradients from the camera coordinate system to the world co-
ordinate system. This stage’s computation is often lightweight.

III. MOTIVATION

We begin by showing the overall performance of 3DGS-
SLAM algorithms. We then examine the key factors that
contribute to the main computational overheads.

A. Performance Characteristics

Latency. Fig. [] shows the amortized per-frame latency
of tracking and mapping across different 3DGS-SLAM algo-
rithms on a Nvidia Ampere mobile GPU [1]]. The results are
averaged over all scenes in the Replica dataset [[70]]. Tracking
has much higher per-frame latency than mapping, because
tracking is executed more frequently than mapping. Thus, the
latency of mapping can often be hidden behind tracking.

Execution Breakdown. We further break down the exe-
cution time of tracking and mapping. Since both passes share
the same pipeline in Fig. B} Fig. [5] shows the execution time
breakdown of key stages in the forward and backward passes.
Across different algorithms, the primary execution bottleneck
in the forward pass is rasterization, while reverse rasterization
dominates the time of the backward pass. Together, these two
stages account for 94.7% of the execution time.

B. Performance Bottlenecks

We further dissect the bottlenecks in forward and backward
passes in the following characterizations, using SplaTAM [36]].

Warp Divergence. As shown in Fig.[3| both projection and
sorting in the forward pass are performed at the tile granularity
to amortize computational cost across pixels within the same
tile. However, rasterization must be executed at the pixel level
to guarantee the rendering correctness: it first performs a-
checking to identify the contributing Gaussians for each pixel
and then integrates only those Gaussians.
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Fig. 8. The execution percentage of
aggregation in the reverse rasteriza-
tion stage using Replica [70] dataset.

Fig. 9. The execution percentage of
a-checking in both rasterization and
reverse rasterization.

In the current rasterization pipeline, each thread is responsi-
ble for rendering one pixel. To leverage GPU parallelism, the
color integration process broadcasts Gaussians within a GPU
warp and masks those threads that do not need to integrate
these Gaussians, as illustrated in Fig. [6] Such a process would
inevitably cause warp divergence. We further measure GPU
thread utilization during color integration, as shown in Fig.
On average, thread utilization is only 28.3%. This shows that
the warp divergence during rasterization is severe.

Aggregation. As prior studies [11]], [29], [[77] show, one
main reason that reverse rasterization is a key bottleneck is
that Gaussians must gather partial gradients from different
pixels. To avoid race conditions, current GPU pipelines rely
on atomicAdd operations during the aggregation stage of
reverse rasterization. However, these atomic operations would
lead to frequent pipeline stalls. Fig. [8| shows the aggregation
overhead in reverse rasterization. Over 63.5% of its execution
time is spent on aggregation. Thus, reducing data contention
in aggregation is critical for improving its performance.

a-Checking. Lastly, another reason that both rasteriza-
tion and reverse rasterization are time-consuming is that a-
checking must be performed for every pixel-Gaussian pair.
Each a-checking requires evaluating an expensive operation,
the exponential function, which must be executed by spe-
cial functional units (SFUs), rather than massive compute
cores [41]. As shown in Fig. E], a-checking accounts for
roughly 43.4% and 33.6% of the total time in rasterization and
reverse rasterization, respectively. Thus, reducing the number
of a-checks is critical to speed up these two stages.

IV. ALGORITHM

This section introduces our sparse processing framework,
which reduces the overall computation by two orders of
magnitude while maintaining task accuracy. Sec.[[V-A]presents
our adaptive pixel sampling tailored for tracking and mapping.
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Sec. then introduces our pixel-based rendering pipeline
that fully unleashes the performance potential of sparse pixel
processing. Lastly, Sec. revisits the remaining bottle-
necks, which motivate our hardware support in Sec.

A. Adaptive Pixel Sampling

In Fig. |3} the overall computation of both the forward and
backward passes in 3DGS-SLAM is roughly proportional to
the number of rendered pixels. To reduce the computation in
3DGS-SLAM, our sparse sampling algorithm aims to select a
subset of pixels for processing. Similar to prior studies [12]],
[16], [39], [42]], [[73], our sampling algorithm also exploits
task-specific characteristics of tracking and mapping to reduce
pixel sampling rates without impacting accuracy. However,
prior work targets different domains, e.g., object detection [39]
and eye tracking [16], [21]], [73]. Their sampling techniques
cannot be directly applied to 3DGS-SLAM. Thus, we design
a new sampling algorithm for SLAM in the following para-
graphs.

Tracking. The optimization target of tracking is to estimate
the pose of the current frame via an iterative training process.
Inspired by traditional SLAM algorithms [31], [59], [83],
which detect and match key feature points for localization,
we observe that, for each frame, tracking in 3DGS-SLAM
only requires optimizing a single camera pose, i.e., a 4 x 4
transformation matrix. Such a process should not necessitate
using all pixels from a dense frame. Therefore, our algorithm
selectively processes only the necessary pixels in tracking.

Unlike prior study [77], which performs sampling at the
granularity of image tiles, our sampling algorithm operates at
the pixel level. Specifically, our algorithm sparsely selects one
pixel per w; x w; image tile. Such a design has two main
purposes: 1) adjacent pixels often carry similar information,
tile-based selection would introduce redundant computation; 2)
sampling one pixel per tile could capture the global features,
making tracking more robust.

Fig. [I0] shows the tracking accuracies of different sampling
strategies under the same sampling rate. Here, “Low-Res.”
stands for downsampling to low-resolution images, while
“Loss” stands for the method from GauSPU [77]. Both
“Random” and “Harris” apply our sampling strategy with
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Fig. 12. The sampling algorithm for mapping. Two types of pixels are
sampled in mapping. The first type is the pixels that were unseen in previous
reconstructions, allowing the algorithm to focus on refining newly observed
regions. The second type includes texture-rich pixels sampled across the entire
image to capture global structural information.

different selection metrics. “Random” select one pixel from
wy X wy tile randomly, while “Harris” selects based on Harris
descriptor [28]]. Overall, methods lacking global coverage, e.g.,
GauSPU [77] or simply reducing the resolution, lead to low
accuracy. In comparison, random sampling achieves equivalent
or better accuracy compared to feature-based methods. For
simplicity, we choose random sampling for tracking.
Mapping. Unlike tracking, which is used to estimate
poses, the purpose of mapping is to reconstruct the previously
unseen regions of the scene. In Fig. [I2] we design our
sampling algorithm to prioritize the unseen pixels. These
pixels are typically concentrated along previously occluded
object boundaries, where depth variations are significant, or in
regions that were previously unexplored. At a given timestamp
t, we define whether a pixel, p, in the current image frame is
unseen based on its accumulated transmittance, i (P),

Flp) = unseen, if ].—‘ﬁ.na](p) > 0.5, 2)
seen, otherwise.
Here, Tfpa(p) is computed during the first forward pass
(we perform only once per mapping). A high transmittance
means that very few Gaussians have contributed to this pixel.
Therefore, function F(p) selects those pixels to better improve
regions that still require reconstruction.

However, selecting only unseen pixels often leads to poor
tracking accuracy, as such pixels tend to be too sparse (see
results in Sec. [VII-D). Thus, in addition to the unseen pixels,
we also sample additional pixels across the image using a
weighted sampling strategy, in Fig. Specifically, we assign
texture-rich pixels with higher probability and select one pixel
per wy, X wy, tile. The probability, P(p), is defined as follows,

P(p) = wr(p) x r, where wr(p) = /G2 + G2, (3)

where G and G, are the horizontal and vertical gradients
at pixel p using Sobel filters [34]]. wr stands for the overall
gradient, which approximates the local texture richness. r is a
random floating number between 0 and 1. Sec. further
compares our strategy against other methods.

B. Pixel-Based Rendering

Motivation. While our sparse sampling algorithm largely
reduces the number of processed pixels during both the
forward and backward passes, we find that its actual speedup
on existing mobile GPUs is limited. In Fig. [IT] we test a case
where we process one pixel per 16 x 16 tile on a mobile
Ampere GPU [1f], we expect a 256x speedup on the two
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Fig. 13. Overview of our pixel-based rendering pipeline for sparse 3DGS-SLAM. To improve GPU thread utilization, we shift from pixel-wise parallelism

to Gaussian-wise parallelism in both the rasterization and reverse rasterization stages. Instead of assigning one thread per pixel, our pipeline enables threads
within a GPU warp to co-render a single pixel. Additionally, we introduce an optimization, preemptive c-checking, that moves a-checking from rasterization
to projection in the pipeline. This not only reduces the workload of subsequent stages but also eliminates warp divergence in rasterization.

dominated stages: rasterization and reverse rasterization, since
their computations are proportional to the number of pixels.

However, Fig. shows that applying our sampling algo-
rithm to the original SplaTAM (denoted as “Org.+S”) yields
only 42x and 5.2x speedup in rasterization and reverse
rasterization, respectively, far below the theoretical gain. The
root cause of this gap is the thread-to-pixel mapping in the
original 3DGS pipeline, where each GPU thread is responsible
for rendering a single pixel. Under sparse sampling, only one
thread in a GPU warp does meaningful work, while other
threads are idle, resulting in severe PE under-utilization.

Pipeline. To address this issue, we propose a new rendering
paradigm, pixel-based rendering in Fig. [I3| that parallelizes
rasterization and reverse rasterization at the Gaussian level.
By doing so, our pipeline significantly mitigates the PE under-
utilization introduced by the original pipeline.

In the forward pass, we make the two key changes.

@ We process projection and sorting at the pixel level,
rather than at the tile level as in the original pipeline. Since
our algorithm requires only a sparse subset of pixels, tile-
level projection, i.e., identifying Gaussians that intersect with
an entire tile, introduces redundant computations by including
Gaussians that do not intersect with the sampled pixels. In
contrast, performing the projection stage at the pixel level
ensures that only the intersected Gaussians would be included
in the subsequent stages, eliminating unnecessary work.

@ We redesign the rasterization stage to operate at the
granularity of Gaussians, such that each pixel is co-rendered
by a warp of threads. Specifically, all threads within a warp
share the same Gaussian list associated with a target pixel.
The Gaussian list is then evenly distributed across the threads
in the warp to ensure an even workload across threads. During
rasterization, each thread computes the partial colors from a
subset of Gaussians, as illustrated in Fig. Once partial

colors are computed, a reduction operation is performed to
accumulate the final color of that pixel.

In the backward pass, the primary change is on the reverse
rasterization stage. Similar to the forward rasterization, we
shift from pixel-level parallelism to Gaussian-level parallelism.
Unlike forward rasterization, our reverse rasterization inverts
the color integration process, with two rounds of reductions.
The first round is introduced by our pixel-based rendering.

@ In the first reduction, we need first to compute the in-
dividual Gaussian transparency, «;, in parallel across threads,
and then perform a cross-thread reduction to obtain I'; for each
Gaussian by accumulating the transparencies H;;ll(l — ;)
of all preceding Gaussians as defined in Eqn. [T} The original
pipeline does not require this reduction because I'; values are
computed and accumulated sequentially by a single thread.

® Once T'; is computed, each thread can then indepen-
dently calculate the partial gradients from the pixel to its
relevant Gaussians. This step is also fully parallelizable in
Fig. [13] Lastly, a second reduction is required to aggregate
all partial gradients associated with each Gaussian, similar to
the original pipeline. Although the second reduction involves
atomic operations that cause data contentions, luckily, our
sparse processing naturally alleviates these data contentions.

Preemptive a-Checking. In addition to pixel-based render-
ing, we also introduce preemptive a-checking, an optimization
that eliminates the warp divergence in rasterization. In the
original pipeline, a-checking is needed during rasterization
to filter out Gaussians that do not intersect with the target
pixel or whose transparency is below a threshold, o*. Since
different pixels often integrate different subsets of Gaussians,
a-checking would introduce warp divergence (Fig. [6).

In our pipeline, the Gaussian list in rasterization is no longer
shared across pixels, which enables us to move «a-checking
earlier in the pipeline. This way, we can effectively pre-filter
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Fig. 14. The execution latency (left y-axis) and the relative time (right y-axis)
of projection and reverse rasterization on mobile GPU during tracking.

Gaussians that will have no contribution to the target pixel.
As a result, we reduce the workloads of subsequent sorting
and rasterization. More importantly, the pixel-Gaussian sorted
list in Fig. [I3] contains only relevant Gaussians that need
to be integrated into the final pixel value, ensuring no warp
divergence in rasterization and reverse rasterization.

Walk-Through. Fig.[I3]illustrates the execution flow of our
algorithm. In the forward pass, we first perform projection and
a-checking for individual pixels to construct an intersection
table that records the set of intersected Gaussians for each
pixel. Next, the intersected Gaussians are sorted by depth for
each pixel. Once the pixel-Gaussian sorted list is obtained,
threads within a warp collaboratively compute the partial
colors of all Gaussians in parallel. Finally, we perform a color
reduction to integrate partial colors into the final pixel.

In the backward pass, we first compute the per-pixel loss.
We then reuse the pixel-Gaussian sorted list from the forward
pass to compute the transparency «; of each intersected
Gaussian in parallel. Next, each intersected pixel-Gaussian pair
computes the accumulated transmittance I'; by accumulating
the «; values of all preceding Gaussians via across-thread
reductions (Eqn. [T). Using the computed I'; values, each thread
then calculates the partial gradient of each intersected pixel-
Gaussian pair. A second reduction is then used to aggregate
the partial gradients for each Gaussian. Finally, the aggregated
gradients are backpropagated to Gaussians via re-projection.

C. Bottleneck Analysis

With all the optimizations together in Sec. Fig.
shows that our pixel-based rendering achieves 103.1x and
95.0x speedup on rasterization and reverse rasterization on
SplaTAM [36]. However, by further analyzing the execution
time breakdown of our pixel-based rendering pipeline, our
experiment shows that the performance bottleneck shifts from
rasterization to projection in the forward pass, as shown in
Fig. [I4h. The proportion of forward time spent in projection
increases from 2.1% to 63.8%. The main reason is that we
move a-checking to the projection stage, which substantially
increases the workload of the projection stage.

Meanwhile, in the backward pass, although the overall
execution time is reduced significantly, Fig.[T4pb shows that the
relative backward time spent in reverse rasterization decreases
from 98.7% to 48.76%. However, reverse rasterization still

accounts for the majority of the backward time (up to 72.7%).
There are primarily two reasons: 1) our reverse rasterization
introduces an additional round of across-thread reductions,
which incurs synchronization overhead; 2) aggregation re-
mains a key bottleneck due to frequent pipeline stalls caused
by atomic operations, despite that sparse pixel processing helps
to alleviate this data contention across threads.

V. ARCHITECTURAL SUPPORT

To address the bottleneck shifts brought by our pixel-based
rendering, we propose our accelerator, SPLATONIC, to further
boost the performance. We first give an overview (Sec.
and discuss how we design a lightweight pipelined architecture
(Sec. and address the key bottlenecks (Sec. [V-C).

A. Overview

Following the philosophy of our pixel-based rendering, we
design a dedicated architecture, as shown in Fig. [I5] Our
design builds upon METASAPIENS [51], a pipelined 3DGS
accelerator for the forward pass only. We extend METASAPI-
ENS to support both forward and backward passes, with the
colored components highlighting our augmentations.

Specifically, we make the following contributions. First, we
design a streaming architecture for sorting, rasterization, and
reverse rasterization stages, and enable the pipelining across
those stages. Second, to support pipelining, we propose a
lightweight rasterization engine in Sec. that removes the
redundant a-checking components that are targeted for tile-
based rendering and addresses the synchronization overhead
in reverse rasterization, i.e., the first round of across-thread
reduction due to pixel-based rendering. Lastly, to address the
bottleneck shifts described in Sec. we further augment
our architecture with: 1) a projection unit to address the
increased workload in projection and accelerate the preemptive
a-checking, and 2) an aggregation unit to alleviate the pipeline
stalls due to data contention and frequent off-chip traffic.

B. Rasterization Engine

In this section, we present our rasterization engine, which
simplifies the core computation in prior designs [29], [77]
and enables high parallelism across Gaussians. Overall, the
rasterization engine contains two sets of processing units:
render units for rasterization and reverse render units for
reverse rasterization. We next describe them individually.

Render Unit. One key inefficiency in prior render unit
designs [46]], [51] is that each Gaussian undergoes a-checking
to determine if it contributes to a pixel. This often leads
to PE under-utilization on accelerators [17]]. To address this,
our architectural design adopts the preemptive «-checking
from Sec. which moves the a-checking logic from
rasterization to projection. By doing so, we guarantee that
only Gaussians that contribute to the target pixel proceed
to rasterization. This optimization allows us to skip the a-
checking logic from render units and compute the partial
color of each Gaussian directly, as shown in Fig. [I5} During
rasterization, multiple render units read different Gaussian data
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Overview of our pipelined architecture. Our architecture is built upon METASAPIENS [51]], a 3DGS accelerator for the forward pass only. We

augment the baseline architecture to support the backward pass. Specifically, we co-design a simplified rasterization engine (purple-colored) that mitigates
the PE under-utilization in rasterization and reverse rasterization. We also propose a caching technique between these two stages to avoid the across-thread
reduction in reverse rasterization (Sec. [V-B). Meanwhile, we augment the projection unit (pink-colored) to support preemptive c-checking and design a
dedicated aggregation unit (yellow-colored) to accelerate reverse rasterization (Sec. [V-C).
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Fig. 16. The design of the aggregation unit. We batch process the partial
gradients of multiple pixels. A merge unit is to perform on-chip gradient
reduction before accumulating with partial accumulated gradients from Gaus-
sian cache. A scoreboard records which Gaussian is ready for accumulation.

and are executed in parallel. A dedicated reduction unit then
gathers these partial colors to accumulate the final pixel value.

Reverse Render Unit. Sec. [[V-C| shows that, after shifting
to pixel-based rendering, one overhead in reverse rasterization
is the need to perform one additional round of across-thread
reductions. The additional round of reduction is to compute
the accumulated transmittance I'; for each Gaussian ¢ and the
prefix color C;, which integrates the partial colors from the
first to the ith Gaussian. Note that, both I'; and C; are inter-
mediate results during forward rasterization. However, caching
these intermediate values in the original tile-based rendering is
prohibitively expensive. Because every pixel in a dense frame
requires storing these two values for all contributed Gaussians.
However, in our pixel-based rendering pipeline, we only need
to store the data for one single pixel at a time, which is largely
manageable and can be held entirely on-chip.

By exploiting this feature, we co-design the reverse render
unit with the render unit and color reduction unit in the forward
pass to output and store the intermediate values, i.e., {I';}
and {C;}, for one pixel in the on-chip buffer, as shown in
Fig. These cached data are then forwarded directly to the
reverse render units. Using these data, the reverse render units

avoid implementing additional logic for reduction and inter-PE
communication. More importantly, eliminating these reduction
operations removes inter-PE dependencies, so that the partial
gradients for each Gaussian can be computed in parallel. Once
computed, the partial gradients are buffered on-chip for the
aggregation stage, which is introduced in Sec.

C. Addressing Key Bottlenecks

Aggregation Unit. To support accumulating partial gra-
dients during reverse rasterization, we introduce a dedicated
aggregation unit following the rasterization engine. In the
backward pass, all partial gradients in the pixel-Gaussian
gradient list need to be accumulated into their corresponding
Gaussians. However, the total number of partial gradients
(roughly the product of the number of Gaussians and the
number of pixels) is too large to perform on-chip reduction.
Moreover, the highly irregular accumulation patterns require
frequently reloading unfinished accumulated gradients from
off-chip memory. Thus, we design an aggregation unit to hide
frequent pipeline stalls introduced by off-chip memory traffic.

Fig.[16] shows the design of our aggregation unit. Here, each
entry in the partial gradient list contains the partial gradients
from a single pixel. During aggregation, the aggregation unit
first reads the Gaussian IDs from n entries, i.e., n = 4 in
Fig. [I6] We compute the union of Gaussian IDs across these
entries and then load the corresponding accumulated gradients
from off-chip memory into the Gaussian cache.

In parallel, the aggregation unit reads n Gaussian tuples, i.e.,
the Gaussian ID and its partial gradient, and forwards them to
the merge unit. The merge unit performs intra-batch reductions
by combining gradients with identical Gaussian IDs and stores
the results in the scoreboard. The role of the scoreboard is
to maintain the current status of stored Gaussians: their IDs
and whether their partial accumulated gradients have been
loaded into the cache. The partial accumulated gradients mean
those accumulated Gaussian gradients that are done partially



and are unfinished. Meanwhile, each cycle, the accumulation
unit checks the scoreboard for ready Gaussians, i.e., those
whose partial accumulated gradients are available in the cache.
Then, the accumulation unit reads the partial accumulated
gradients from the Gaussian cache, updates them with the
partial gradients stored in the scoreboard, and writes back to
the cache. This way, we can effectively hide the off-chip traffic
latency by simultaneously updating other Gaussian gradients.
Projection Unit. In Sec. we show that once applying
our pixel-based rendering, the bottleneck in the forward pass
shifts from rasterization to projection due to preemptive a-
checking (Fig. [[4p). Such a shift comes from two factors:
1) each Gaussian’s bounding box (BBox) must be checked
against all sampled pixels; and 2) a-checking involves expen-
sive exponential computations, as mentioned in Sec.
To address the first issue, we propose a direct indexing
method using the four corners of each Gaussian’s BBox to
limit the number of pixels we iterate. Since our sampling
algorithm selects one pixel per tile, we can directly compute
the index range in the sampled pixel list using the minimal and
maximal coordinates. This way, we avoid exhausting the entire
pixel list and avoid unnecessary a-checking. Note that, the
unseen pixel indices in mapping are stored separately, so that
the unseen pixel indices do not interrupt our indexing strategy.
Second, to mitigate the computational cost of exponentiation,
we approximate the exponential function with a lookup table
(LUT) [53]]. Our empirical evaluation shows that a LUT with a
size of 64 entries is sufficient to maintain the same accuracy.

VI. EXPERIMENTAL SETUP

Hardware Configuration. Overall, SPLATONIC has a ba-
sic configuration similar to METASAPIENS [51]. SPLATONIC
consists of eight projection units, four hierarchical sorting
units, four rasterization engines, and one aggregation unit. We
augment each projection unit with four a-filter units. Each
rasterization engine has 2 x 2 render units and 2 X 2 reverse
render units with one color reduction unit in between. To store
the intermediate I'; and C; values, each rasterization engine
is designed with an 8 KB double buffer. In addition, a 64 KB
global double buffer is used to hold the intermediate data of the
entire pipeline. Lastly, the aggregation unit is designed with
four channels to process the partial gradients of four pixels in
parallel with a 32 KB Gaussian cache and a 8 KB scoreboard.

Experimental Methodology. For GPU performance, we
measure latency, including the execution time as well as the
kernel launch on the mobile Ampere GPU. The GPU power
is directly obtained using the built-in power sensing circuitry
on Orin. For accelerator performance, we develop a RTL
implementation of our pipelined architecture. The design is
clocked at 500 MHz. The RTL design is implemented via
Synposys synthesis and Cadence layout tools in TSMC 16nm
FinFET technology. The numbers of our RTL design are then
scaled down to 8 nm node using DeepScaleTool [66], [69] to
match the mobile Ampere GPU on Nvidia Orin SoC in § nm
node [1]. The SRAMs are generated using the Arm Artisan
memory compiler. The DRAM is modeled after 4 channels of

Micron 16 Gb LPDDR3-1600 memory [2]]. The DRAM energy
is obtained using Micron System Power Calculators [3]].

Area. Overall, SPLATONIC has a smaller area (1.07 mm?)
compared to other 3DGS accelerators, such as GSCore
(1.77 mm?) [46] and GSArch (3.42 mm?) [29], with all areas
scaled down to 16nm node using DeepScaleTool [[66], [69].
The primary contributor to SPLATONIC compact design is its
efficient rasterization engine, which accounts for only 28%
of the total area. The remaining stages occupy 57% of the
area. Some are due to the larger projection units. The rest are
SRAMSs, which comprise 15% of the area.

Software Setup. We evaluate SPLATONIC on the two
widely used indoor SLAM datasets, Replica [70] and TUM
RGB-D [71]. Replica comprises eight sequences. Each se-
quence consists of 2000 RGB-D images. TUM RGB-D is
a more complex real-world dataset with fast camera motion.
To evaluate the effectiveness of our sampling algorithms, we
use four different 3DGS-SLAM algorithms: SplaTAM [36],
MonoGS [56], GS-SLAM [81]], and FlashSLAM [61].

Metrics. We report two standard accuracy metrics: absolute
trajectory error (ATE), which is used to measure the accuracy
of pose estimation, and peak signal-to-noise ratio (PSNR)
which is to measure the reconstruction quality.

Baselines. We compare three hardware baselines:

« GPU: a mobile Ampere GPU on Nvidia Orin SoC [1].

o GSARCH [29]: a dedicated 3DGS training architecture
for the tile-based rendering pipeline. Here, we compare
the edge configuration reported in the GSArch paper.

e GAUSPU [77]: a dedicated accelerator for 3DGS-SLAM.
It executes projection and sorting on GPU, and the
remaining stages are executed on the dedicated acceler-
ator. Here, we model the GPU performance using the
parameters obtained from the mobile GPU on Orin.

To ensure a fair comparison with the mobile GPU performance
on Orin, we scale both designs down to 8 nm node using
DeepScaleTool [[66f, [[69] and clock them at 500 MHz. We
do not include inference-only 3DGS accelerators [17], [45]-
[47], [51]], [79] in our evaluation, because their delay will be
dominated by the backward pass latency (see Fig. [5).

Variants. We evaluate two variants of SPLATONIC to sep-
arate the contributions in our paper: SPLATONIC-SW, which
executes our pixel-based rendering on mobile GPUs; and
SPLATONIC-HW, which executes our pixel-based rendering on
our proposed pipelined architecture.

VII. EVALUATION
A. Accuracy

In our sampling algorithm, we set the tile size to w; =
16 x 16 for tracking and w,, = 4 x 4 for mapping. During
mapping, we perform one full-frame mapping for every four
frames. Unless otherwise specified, this configuration is used
as the default setting for the remaining evaluations.

Tracking Accuracy. Fig. and Fig. show the
tracking accuracy comparison between the original 3DGS-
SLAM algorithms and the ones with our sparse sampling
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Fig. 17. The tracking accuracy and reconstruction quality comparison between
the baselines and our sampling algorithm across 8 sequences on Replica.

Fig. 19. The end-to-end speedup of SPLATONIC over the baseline algorithms
on mobile Ampere GPU Orin. ORG.+S is the baseline that applies sparse pixel
sampling without our pixel-based rendering pipeline. Note that, the tracking
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Fig. 18. The tracking accuracy and reconstruction quality comparison between
the baselines and our sampling algorithm over 3 sequences on TUM RGB-D.

algorithm the tracking accuracy. Overall, SPLATONIC matches
or outperforms the performance of original algorithms. Across
four different algorithms, the average ATEs of SPLATONIC are
0.46 cm and 2.26 cm on Replica and TUM RGB-D, respec-
tively. SPLATONIC are 0.01 and 0.03 lower than the baselines.
Our better accuracy stems from the fact that sparsely sampled
pixels can help eliminate the false matching in regions with
repetitive patterns, similar to extracting keypoint descriptors
in conventional SLAM. The same principle in conventional
SLAM is also applied to 3DGS-SLAMs.

Reconstruction Quality. Fig. and Fig. compare
the reconstruction quality between the original algorithms and
the ones with our proposed sparse sampling approach. Across
all four 3DGS-SLAM algorithms, SPLATONIC achieves higher
PSNR values on average. Notably, SPLATONIC outperforms
the baseline by 0.8 dB on SplaTAM [36]. This demonstrates
that our sampling strategy in the mapping process effectively
directs the training focus toward unseen regions and texture-
rich areas, thus enhancing the overall reconstruction quality.

B. GPU Performance.

We first show that our sparse pixel sampling with proposed
pixel-based rendering can already achieve significant speedups
and energy savings on off-the-shelf GPUs without hardware
support. Fig. shows the end-to-end speedup and energy
savings of SPLATONIC on the Nvidia Orin SoC.

In our evaluation, we assume that tracking and mapping are
executed separately on two identical mobile GPUs with equal
compute power, allowing these two stages to run in parallel.
For comparison, we also include a variant, ORG.+S, which
applies only our sparse pixel sampling algorithm without
integrating our pixel-based rendering pipeline.

End-to-End Performance. Fig. [19| shows the end-to-end
speedup and normalized energy of SPLATONIC compared to
baseline algorithms on a mobile Ampere GPU on Nvidia Orin.
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Fig. 20. The speedup and energy sav- Fig. 21. The speedup on two key

bottleneck stages, rasterization in for-
ward pass and reverse rasterization in
the backward pass, during tracking.

ings comparison on mapping. Despite
limited speedup, the latency of map-
ping still can be hidden by tracking.

The left y-axis shows the speedup against the GPU baselines,
while the right y-axis shows the normalized energy. Overall,
SPLATONIC achieves 14.6x speedup and saves 86.1% energy
compared to the original algorithms. The end-to-end speedup
is aligned with the tracking speedup, as the latency of mapping
can be hidden by tracking. In comparison, ORG.+S achieves
only 3.4x speedup and 55.5% energy savings. This is because
the original tile-based rendering pipeline would result in low
GPU utilization and severe warp divergence.

Meanwhile, we also report the standalone speedup and en-
ergy savings for mapping in Fig. On average, SPLATONIC
can achieve only 3.2x speedup and 60.0% energy savings on
mapping. This is because mapping needs to render more pixels
(roughly one pixel per 4 x 4 tile) to reconstruct unseen regions.
As the number of rendered pixels increases, the advantages
of our pixel-based pipeline might be offset by the additional
overhead introduced in projection and sorting stages due to
no sharing of computation between pixels. Sec. further
shows the sensitivity of speedup to the pixel sampling rate.

Bottleneck stages. The main performance gain of SPLA-
TONIC on GPU is from addressing two key bottlenecks,
rasterization in forward pass and reverse rasterization in the
backward pass. Fig. further analyzes the speedup of these
two bottleneck stages during the tracking process. Without
modifying the pipeline, applying sparse sampling alone yields
only 4.1x and 4.3x speedup on rasterization and reverse
rasterization, respectively. In contrast, our pipeline achieves
64.4x and 77.2x speedup on these two stages, respectively.

C. Hardware Performance

Since tracking dominates the overall execution, we primarily
focus on the tracking performance in this section. Fig.
shows the comparison of the performance and energy savings
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different dedicated architectures during tracking. “S”: applying sparse pixel
sampling. Numbers are normalized against GPU.

across different architectures. For a fair comparison, we also
include variants of GAUSPU and GSARCH that incorporate
our sparse sampling algorithm, denoted with the “+S” suffix.
All numbers are normalized to the GPU baseline on Orin. To
better show the difference across hardware variants, we define
the energy saving as the ratio of energy consumption between
GPU and each corresponding variant.

In Fig. 2Zh, SPLATONIC-HW achieves 274.9x speedup,
the highest performance compared to GAUSPU+S and
GSARCH+S. Because both GAUSPU+S and GSARCH+S
are accelerators designed for tile- or subtile-based rendering,
where sparse pixel sampling leads to poor PE utilization
in rasterization and reverse rasterization stages. Also, our
simplified rasterization engine further reduces both the overall
computation and off-chip data traffic in these two stages.
Surprisingly, our software version, SPLATONIC-SW, outper-
forms GAUSPU and GSARCH, both of which are variants
that execute the dense 3DGS-SLAM.

On energy savings, Fig. 2Zb shows a similar trend with
the performance results. Overall, SPLATONIC-HW has the
highest energy efficiency with 4738.5x of energy savings. In
comparison, GAUSPU+S and GSARCH+S achieves 23.6x
and 1331.1x of energy savings, respectively. The relatively
low energy efficiency of GAUSPU+S is because it relies on
GPUs to execute the projection and sorting stages. Meanwhile,
GSARCH+S has relatively smaller energy savings compared
to SPLATONIC-HW due to its sub-tile rendering, whereas
SPLATONIC-HW benefits from a simplified rasterization.

In addition, we also show the mapping performance com-
parison in Fig. 23] The overall trends stay the same as tracking.

D. Ablation Study

Fig. shows an ablation study that evaluates the con-
tributions of different components in our mapping sampling
algorithm. The results show that combining weighted random
sampling (for texture-rich pixels) with unseen pixels yields
the highest accuracy. Note that, our combined strategy out-
performs the original algorithm in both pose tracking and
reconstruction quality. Overall, our combined variant achieves
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Fig. 23. The mapping speedup com-
parison across different dedicated ar-
chitectures. SPLATONIC still outper-
forms the other two accelerators. The
legend is shared with Fig. 22]

Fig. 24. Ablation study of different
sampling strategies in mapping. We
only show the results of SplaTAM.
“Comb”: uses both weighted random
sampling and unseen pixels.
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Fig. 25. The sensitivity of perfor-
mance to the sampling rate. Numbers
are normalized to GPU.

Fig. 26. The sensitivity of accuracy
to the sampling rate.

a 0.05 cm reduction in pose error and a 1.0 dB quality
improvement compared to the baseline algorithm.

E. Sensitivity Study

Fig. 25]shows the sensitivity of performance to the sampling
rate. The x-axis represents different tile sizes, where each
tile contains one sampled pixel. The results show that our
pixel-based rendering is not always the optimal choice. As
the tile size decreases, the data sharing among adjacent pixels
increases. Tile-based rendering can amortize computation,
thereby achieving higher speedup. For example, at a tile size of
1 x 1, SPLATONIC-HW yields lower speedup than GSARCH.
However, when rendered pixels are sparse, SPLATONIC-HW
significantly outperforms tile-based accelerators.

Meanwhile, Fig. [26 shows the sensitivity of mapping to the
sampling rate. Here, we present the SplaTAM result of a single
sequence, Office 2, in the Replica dataset [[70]. We find that a
tile size of 4 x 4 gives the best trade-off between performance
and reconstruction accuracy. The sensitivity of tracking to the
sampling rate has already been shown in Fig.

Fig. 27| shows the sensitivity of performance to the number
of projection units and render units. We do not conduct the
sensitivity study on different buffer sizes, as each buffer size is
tightly coupled with the corresponding PEs to support double
buffering without wasting the on-chip buffer resources. In
Fig. the buffer size of each configuration is proportional
to its corresponding PE counts. All performance numbers are
normalized to the default configurations, 8 projection units
and 4 render units. Overall, we find that the performance
gain is mainly affected by the number of projection units,
especially when there is a small number of projection units.
As the number of projection units increases, projection is no
longer a bottleneck. Instead, further increasing the number of
render units improves the overall performance.
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Fig. 27. The sensitivity of performance to the number of projection units and
render units.

VIII. RELATED WORK

3DGS Acceleration. There is a wide range of studies
that have proposed different techniques to improve the ef-
ficiency of 3DGS on GPUs. Several studies have proposed
various compression schemes or data structures to optimize
storage and performance [23], [38]], [43], [53[l, [60], [63]]. For
instance, CompactGS [43]] proposes to use vector quantization
to reduce the model size. While HierarchicalGS [38] and
OctreeGS [|63]] leverage the tree-like data structure to avoid
unnecessary computations. Other approaches propose various
pruning techniques [[13]], [14]], [S1], [S3] to eliminate insignif-
icant Gaussians. Additional efforts [15]], [27], [32], [[75] focus
on GPU-level optimizations to mitigate workload imbalance
and warp divergence during rasterization. For instance, both
AdR-Gaussian [75] and Seele [32]] tame the warp divergence
with co-training techniques.

In contrast to those application-agnostic methods, SPLA-
TONIC exploits the unique algorithmic characteristics of
SLAM by introducing a pixel sampling algorithm and a pixel-
based rendering pipeline, significantly improving efficiency.

Architecture for Neural Rendering. A wide range of
studies have been done on accelerating neural rendering.
Earlier work primarily focused on Neural Radiance Fields
(NeRF) [19], [22], [44], [48]l, [491, [521, (571, (62]], [68], which
is the predecessor of 3DGS. Recent years, due to the superior
efficiency of 3DGS, studies have shifted their focus to 3DGS
accelerations [L1], [17], [29], [45]-[47], 501, [151]I, [79], [82].

Some studies propose dedicated hardware accelerators. For
instance, both GSCore [46] and GBU [79] are designed for
accelerating the forward pass in 3DGS. MetaSapiens [51]]
leverages the human visual perception and designs a ded-
icated rendering system for VR. Lumina [17] proposes a
caching technique to amortize the per-pixel rendering cost.
Meanwhile, GSArch [29] and GauSPU [77] focus on the
training procedure and address the frequent pipeline stalls
due to off-chip traffic. On the other side of the spectrum,
some approaches augment general-purpose GPUs to improve
3DGS performance. For example, VR-Pipe [45] improves
GPU-based inference, while ARC [[11] proposes architectural
optimizations for training.

Nevertheless, all these architectural designs are still built
on top of the conventional tile-based rendering paradigm,
which is inherently inefficient for sparse pixel processing.
In contrast, our co-designed pipelined architecture eliminates
redundant computation and significantly improves PE uti-

lization. Meanwhile, SPLATONIC can extend beyond SLAM
applications. Recent studies have explored sparse training
techniques [8]], [63]] to reduce the computational overhead of
3DGS training. Other studies have proposed sparse rendering
approaches for foveated rendering in VR [9], [18]], [51]. By
leveraging our pixel-based rendering pipeline, these methods
can be further accelerated, demonstrating the broader applica-
bility of our design across diverse 3DGS-related domains.
Sparse Processing. Quite a few studies have proposed
sparse processing techniques in various vision tasks to reduce
the overall computation and data transmission [[16], [21]], [24],
[251, 130], [391, [40], [64]. For instance, fast R-CNN [24] and
faster R-CNN [64] introduced region proposal networks for
general object detection. Others [16], [39], [58]] react based on
the previous results or intermediate data to pre-filter related
data before sending it through compute-heavy backbones.
For instance, Rhythmic pixel regions [39] provides a flexible
interface that allows applications to dynamically select region-
of-interests. More recent efforts [20]], [21]], [54], [8O] also co-
design algorithms with the camera sensor to reduce the overall
energy consumption across the entire sensor-compute system.

IX. CONCLUSION AND DISCUSSION

In this work, we present SPLATONIC, a hardware-software
co-designed solution to accelerate 3DGS-based SLAM for
real-time performance on mobile platforms. By leveraging
classic algorithmic insights from traditional SLAM with our
dedicated pixel-based rendering, we show that SPLATONIC
achieves one order of magnitude higher performance on off-
the-shelf GPUs, and we further boost performance and effi-
ciency with our dedicated hardware support.
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